
Tom Fucoloro zeroed in on this Vision Zero problem in his assessment:Will a video analytics algorithm save street users? Well, if it gets DOTs to follow low-tech solutions that are already obvious. #VisionZero https://t.co/DY3j0SG37a
— The Urbanist (@UrbanistOrg) June 1, 2017
Of course, this data will be solely academic if cities don’t have the political will to act on it. We already know, for example, that a wide curb radius encourages people driving to take turns too quickly and too close to people walking. Each of the red areas above could be addressed by extending the curbs closer to the center of the intersection or by installing a protected intersection. A more acute curb radius would require people driving cars to slow down and people driving large trucks or buses to swing left before turning right, but it would have a big positive impact on safety and would create more sidewalk space at each corner.In sum, the prospect of machine learning apparently seems nearer than teaching old traffic engineers new tricks, namely the trick of designing streets and intersections that aren’t high-speed death traps. So on those grounds this project could be defended: we will use the cudgel of big data to finally coerce reluctant City officials and engineers into designing safer, lower-speed streets. Not that the technology itself will necessarily tell us anything we don’t know, but when our leaders worship at the alter of new technology sometimes you have to make an offering to get your way.